If it's not what You are looking for type in the equation solver your own equation and let us solve it.
q^2-45q=0
a = 1; b = -45; c = 0;
Δ = b2-4ac
Δ = -452-4·1·0
Δ = 2025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2025}=45$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-45)-45}{2*1}=\frac{0}{2} =0 $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-45)+45}{2*1}=\frac{90}{2} =45 $
| 376=2*89+c*2 | | 39=3x+2(1-3) | | (25+6x)+73+58=180 | | 2(4t-5)=24 | | A=9b=40 | | b=+295 | | 13+1+2x=32 | | 3z^2+4z-7=0 | | 2q^2-31q+15=0 | | 5X-2x-27=15 | | 8n-(6+5)=1 | | 6x+19+x=280 | | (x+50)+(4x+20)+(2x+80)=360 | | t+24/5=10 | | 3x5^x-6=12 | | 8n-(6n+5=1 | | 2X9,-4=5x-28 | | 2x+x³=30 | | 5/2c=8/13 | | 6.2+7d/2.5=14.88 | | 4n^2-45n+11=0 | | 90=(6x+4)10x | | 2y+21/5=9 | | 19=2t+5 | | -6/7=(-1/2v)-4/3 | | 2y+2/5=9 | | z2-3z-70=0 | | 3(2x-)=3x+4x | | An=7n-16 | | 12225=7500+225n | | 03b=0.9 | | 39u^2-10u-1=0 |